Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Neurosci ; 74(1): 30, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478195

RESUMO

Microglia are resident macrophages within the central nervous system, serving as the first responders to neuroinflammation. Glucocorticoids (GCs) may cause damage to brain tissue, but the specific mechanism remains unclear. This study was divided into two parts: a glucocorticoid receptor (GR) mitochondrial translocation intervention experiment and a mitochondrial oxidative stress inhibition experiment. BV-2 microglia were stimulated with dexamethasone (DEX) and treated with either tubastatin-A or mitoquinone (MitoQ) for 24 h. Our results showed that DEX increased the translocation of GRs to mitochondria, and this effect was accompanied by decreases in the expression of mitochondrially encoded cytochrome c oxidase 1 (MT-CO1) and mitochondrially encoded cytochrome c oxidase 3 (MT-CO3) and increases in the expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), caspase-1, and Gasdermin D (GSDMD). The level of mitochondrial respiratory chain complex IV (MRCC IV) and adenosine triphosphate (ATP) was decreased. An elevation in the level of mitochondrial oxidative stress and the opening of the mitochondrial permeability transition pore (mPTP) was also observed. Mechanistically, tubastatin-A significantly suppressed the mitochondrial translocation of GRs, improved the expression of mitochondrial genes, promoted the restoration of mitochondrial function, and inhibited pyroptosis. MitoQ significantly prevented mitochondrial oxidative stress, improved mitochondrial function, and reduced apoptosis and pyroptosis. Both tubastatin-A and MitoQ suppressed DEX-induced pyroptosis. This study substantiates that the increase in the mitochondrial translocation of GRs mediated by GCs exacerbates oxidative stress and pyroptosis in microglia, which indicates that the regulation of mitochondrial pathways by GCs is pathogenic to microglia.


Assuntos
Glucocorticoides , Piroptose , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Microglia/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Estresse Oxidativo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
2.
Int J Biol Sci ; 20(5): 1707-1728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481805

RESUMO

Acute pancreatitis (AP) is a common abdominal disease that typically resolves on its own, but the mortality rate dramatically increases when it progresses to severe acute pancreatitis (SAP). In this study, we investigated the molecular mechanism underlying the development of SAP from AP. We utilized two SAP models induced by pancreatic duct ligation and caerulein administration. Transcriptomic and proteomic analyses were subsequently performed to determine the mRNA and protein expression profiles of pancreatic samples from SAP and AP model and normal mice. To explore the role of Hspb1 in SAP, we used Hspb1 knockout (KO) mice, a genetically engineered chronic pancreatitis strain (T7D23A), Anxa2 KO mice, and acinar cell-specific Prdx1 knockout mice. Additionally, various in vivo and in vitro assays were performed to elucidate the molecular events and direct targets of Hspb1 in acinar cells. We found that Hspb1 expression was upregulated in AP samples but significantly reduced in acinar cells from SAP samples. KO or inhibition of Hspb1 worsened AP, while AAV8-Hspb1 administration mitigated the severity of SAP and reduced remote organ damage in mice. Furthermore, AAV8-Hspb1 treatment prevented the development of chronic pancreatitis. We found that KO or inhibition of Hspb1 promoted acinar cell death through apoptosis and ferroptosis but not necroptosis or autophagy by increasing reactive oxygen species (ROS) and lipid ROS levels. Mechanistically, Hspb1 directly interacted with Anxa2 to decrease its aggregation and phosphorylation, interact with the crucial antioxidant enzyme Prdx1, and maintain its antioxidative activity by decreasing Thr-90 phosphorylation. Notably, the overexpression of Hspb1 did not have a protective effect on acinar-specific Prdx1 knockout mice. In summary, our findings shed light on the role of Hspb1 in acinar cells. We showed that targeting Hspb1/Anxa2/Prdx1 could serve as a potential therapeutic strategy for SAP.


Assuntos
Ferroptose , Pancreatite Crônica , Animais , Camundongos , Doença Aguda , Antioxidantes/farmacologia , Apoptose/genética , Camundongos Knockout , Peroxirredoxinas/genética , Peroxirredoxinas/farmacologia , Proteômica , Espécies Reativas de Oxigênio
3.
Toxicol Sci ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38407484

RESUMO

The effect of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.

4.
Signal Transduct Target Ther ; 8(1): 412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884527

RESUMO

Cardiovascular disease (CVD) is the leading cause of death in the world, with a high incidence and a youth-oriented tendency. RNA modification is ubiquitous and indispensable in cell, maintaining cell homeostasis and function by dynamically regulating gene expression. Accumulating evidence has revealed the role of aberrant gene expression in CVD caused by dysregulated RNA modification. In this review, we focus on nine common RNA modifications: N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N4-acetylcytosine (ac4C), pseudouridine (Ψ), uridylation, adenosine-to-inosine (A-to-I) RNA editing, and modifications of U34 on tRNA wobble. We summarize the key regulators of RNA modification and their effects on gene expression, such as RNA splicing, maturation, transport, stability, and translation. Then, based on the classification of CVD, the mechanisms by which the disease occurs and progresses through RNA modifications are discussed. Potential therapeutic strategies, such as gene therapy, are reviewed based on these mechanisms. Herein, some of the CVD (such as stroke and peripheral vascular disease) are not included due to the limited availability of literature. Finally, the prospective applications and challenges of RNA modification in CVD are discussed for the purpose of facilitating clinical translation. Moreover, we look forward to more studies exploring the mechanisms and roles of RNA modification in CVD in the future, as there are substantial uncultivated areas to be explored.


Assuntos
Doenças Cardiovasculares , Humanos , Adolescente , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Adenosina/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/metabolismo
5.
Commun Biol ; 6(1): 805, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532777

RESUMO

Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases , Proteínas Quinases Associadas a Fase S , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
6.
Int J Med Sci ; 20(7): 888-900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324185

RESUMO

Acute pancreatitis (AP) is a common acute abdominalgia of the digestive tract. When the disease progresses to severe acute pancreatitis (SAP), the complications and mortality rate greatly increase. Determining the key factors and pathways underlying AP and SAP will help elucidate the pathological processes involved in disease progression and will be beneficial for identifying potential therapeutic targets. We conducted an integrative proteomics, phosphoproteomics and acetylation proteomics analysis of pancreas samples collected from normal, AP and SAP rat models. We identified 9582 proteins, 3130 phosphorylated modified proteins, and 1677 acetylated modified proteins across all samples. The differentiated expression proteins and KEGG pathway analysis suggested the pronounced enrichment of key pathways based on the following group comparisons: AP versus normal, SAP versus normal, and SAP versus AP. Integrative proteomics and phosphoproteomics analyses revealed 985 jointly detected proteins in the comparison of AP and normal samples, 911 proteins in the comparison of SAP and normal samples, and 910 proteins in the comparison of SAP and AP samples. Based on proteomics and acetylation proteomics analyses, we found that 984 proteins were jointly detected in the comparison of AP and normal samples, 990 proteins in SAP and normal samples, and 728 proteins in SAP and AP samples. Thus, our study offers a valuable resource to understand the proteomic and protein modification atlas in AP.


Assuntos
Pancreatite , Ratos , Animais , Pancreatite/patologia , Doença Aguda , Proteômica , Acetilação , Pâncreas/patologia
7.
Int J Biol Sci ; 18(13): 4869-4883, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982899

RESUMO

Non-small cell lung cancer (NSCLC) is one of the deadliest cancers in the world. Metastasis is considered one of the leading causes of treatment failure and death in NSCLC patients. A crucial factor of promoting metastasis in epithelium-derived carcinoma has been considered as epithelial-mesenchymal transition (EMT). Rictor, one of the components of mTORC2, has been reportedly involved in EMT and metastasis of human malignancies. However, the regulatory mechanisms of Rictor, Rictor-mediated EMT and metastasis in cancers remain unknown. Our present study indicates that Rictor is highly expressed in human NSCLC cell lines and tissues and is regulated, at least partially, at the transcriptional level. Knockdown of Rictor expression causes phenotype alterations through EMT, which is accompanied by the impairment of migration and invasion ability in NSCLC cells. Additionally, we have cloned and identified the human Rictor core promoter for the first time and confirmed that transcription factor KLF4 directly binds to the Rictor promoter and transcriptionally upregulated Rictor expression. Knockdown of KLF4 results in Rictor's downregulation accompanied by a series of characteristic changes of mesenchymal-epithelial transition (MET) and significantly decreases migration, invasion as well as metastasis of NSCLC cells. Re-introducing Rictor in KLF4-knockdown NSCLC cells partially reverses the epithelial phenotype to the mesenchymal phenotype and attenuates the inhibition of cell migration and invasion caused by KLF4 knocking down. Knockdown of KLF4 prevents mTOR/Rictor interaction and metastasis of NSCLC in vivo. The understanding of the regulator upstream of Rictor may provide an opportunity for the development of new inhibitors and the rational design of combination regimens based on different metastasis-related molecular targets and finally prevents cancer metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína Companheira de mTOR Insensível à Rapamicina , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel/genética , Neoplasias Pulmonares/patologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Fatores de Transcrição/metabolismo
8.
J Cancer ; 12(21): 6576-6587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659548

RESUMO

Aims: Bai-He-Gu-Jin-Tang (BHGJT) is a classic Chinese formula used to treat lung cancer, while the underlying molecular mechanism remains obscure. The aim of the study was to investigate the molecular mechanism of BHGJT on lung cancer and demonstrate the potential for synergistic treatment combining BHGJT with conventional therapy. Methods: Cell viability assay, colony formation assay and EdU assay were used to determine the in vitro effects of BHGJT, and a subcutaneous xenograft model was used to evaluate the in vivo effect. Cell cycle analysis, apoptosis rate analysis, immunohistochemical and immunofluorescent staining, Western blot assays and network pharmacology-based analysis were used to explore the underlying mechanisms. Results: We found that BHGJT inhibited cell proliferation via a dose-dependent pathway and obviously hindered tumor growth in vivo in lung cancer. Cell cycle arrest and apoptosis were pronouncedly induced by BHGJT via dysregulation of the cell cycle regulators CDK4 and Cyclin D1 and dysregulation of apoptosis-associated proteins, such as cleaved caspase 3/9 and the BCL-2 family. Based on a network pharmacology-based analysis and experimental evidence, we demonstrated that the AKT/GSK3ß/ß-catenin signaling pathways were responsible for BHGJT-induced apoptosis in lung cancer cells. Additionally, autophagy was induced by BHGJT via the AMPK/mTORC1/ULK1 signaling pathway, and blocking autophagy with either chloroquine or a ULK1 inhibitor increased the killing efficiency of BHGJT in lung cancer cells. Conclusion: Our findings indicate that the BHGJT formula efficiently inhibits lung cancer growth and represents a potential complementary and alternative treatment for lung cancer.

9.
Exp Biol Med (Maywood) ; 246(17): 1869-1883, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171978

RESUMO

Pancreatic cancer is a highly malignant cancer of the pancreas with a very poor prognosis. Methylation of histone lysine residues is essential for regulating cancer physiology and pathophysiology, mediated by a set of methyltransferases (KMTs) and demethylases (KDMs). This study surveyed the expression of methylation regulators functioning at lysine 9 of histone 3 (H3K9) in pancreatic lesions and explored the underlying mechanisms. We analyzed KDM1A and KDM3A expression in clinical samples by immunohistochemical staining and searching the TCGA PAAD program and GEO datasets. Next, we identified the variation in tumor growth in vitro and in vivo after knockdown of KDM1A or KDM3A and explored the downstream regulators of KDM1A and KDM3A via RNA-seq, and gain- and loss-of-function assays. Eleven H3K9 methylation regulators were highly expressed in pancreatic cancer, and only KDM1A and KDM3A expression positively correlated with the clinicopathological characteristics in pancreatic cancer. High expression of KDM1A or KDM3A positively correlated with pathological grade, lymphatic metastasis, invasion, and clinical stage. Kaplan-Meier analysis indicated that a higher level of KDM1A or KDM3A led to a shorter survival period. Knockdown of KDM1A or KDM3A led to markedly impaired tumor growth in vitro and in vivo. Mechanistically, CCNA2, a cell cycle-associated gene was partially responsible for KDM1A knockdown-mediated effect and CDK6, also a cell cycle-associated gene was partially responsible for KDM3A knockdown-mediated effect on pancreatic cancer cells. Our study demonstrates that KDM1A and KDM3A are highly expressed in pancreatic cancer and are intimately correlated with clinicopathological factors and prognosis. The mechanism of action of KDM1A or KDM3A was both linked to the regulation of cell cycle-associated genes, such as CCNA2 or CDK6, respectively, by an H3K9-dependent pathway.


Assuntos
Ciclo Celular/fisiologia , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , Regulação para Cima , Neoplasias Pancreáticas
10.
Cell Death Dis ; 12(7): 626, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140464

RESUMO

Acinar cell injury and the inflammatory response are critical bioprocesses of acute pancreatitis (AP). We investigated the role and underlying mechanism of sulfiredoxin-1 (Srxn1) in AP. Mild AP was induced by intraperitoneal injection of cerulein and severe AP was induced by partial duct ligation with cerulein stimulation or intraperitoneal injection of L-arginine in mice. Acinar cells, neutrophils, and macrophages were isolated. The pancreas was analyzed by histology, immunochemistry staining, and TUNEL assays, and the expression of certain proteins and RNAs, cytokine levels, trypsin activity, and reactive oxygen species (ROS) levels were determined. Srxn1 was inhibited by J14 or silenced by siRNA, and overexpression was introduced by a lentiviral vector. Transcriptomic analysis was used to explore the mechanism of Srxn1-mediated effects. We also evaluated the effect of adeno-associated virus (AAV)-mediated overexpression of Srxn1 by intraductal administration and the protection of AP. We found that Srxn1 expression was upregulated in mild AP but decreased in severe AP. Inhibition of Srxn1 increased ROS, histological score, the release of trypsin, and inflammatory responses in mice. Inhibition of Srxn1 expression promoted the production of ROS and induced apoptosis, while overexpression of Srxn1 led to the opposite results in acinar cells. Furthermore, inhibition of Srxn1 expression promoted the inflammatory response by accumulating and activating M1 phenotype macrophages and neutrophils in AP. Mechanistically, ROS-induced ER stress and activation of Cathepsin B, which converts trypsinogen to trypsin, were responsible for the Srxn1 inhibition-mediated effects on AP. Importantly, we demonstrated that AAV-mediated overexpression of Srxn1 attenuated AP in mice. Taken together, these results showed that Srxn1 is a protective target for AP by attenuating acinar injury and inflammation through the ROS/ER stress/Cathepsin B axis.


Assuntos
Catepsina B/metabolismo , Estresse do Retículo Endoplasmático , Terapia Genética , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Pâncreas/enzimologia , Pancreatite/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Catepsina B/genética , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo , Neutrófilos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Pâncreas/patologia , Pancreatite/enzimologia , Pancreatite/genética , Pancreatite/patologia , Transdução de Sinais , Regulação para Cima
11.
J Cancer ; 12(12): 3741-3753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995648

RESUMO

Colorectal cancer (CRC) is the most frequently diagnosed cancer of the digestive tract. Chemotherapy drugs such as oxaliplatin are frequently administered to CRC patients diagnosed with advanced or metastatic disease. A deep understanding of the molecular mechanism underlying CRC tumorigenesis and identification of optimal biomarkers for estimating chemotherapy sensitivity are essential for the treatment of CRC. Numerous members of the kinesin family are dysregulated in cancers, contributing to tumorigenesis, metastasis and drug resistance. KIF11 is a key component of the bipolar spindle and is highly expressed in several cancer types. We analyzed KIF11 expression in clinical samples by Western blotting and qRT-PCR and explored its role and mechanism in CRC growth and sensitivity to oxaliplatin via detection of the phosphorylation profile of kinases and gain-and-loss-of-function assays. We found that KIF11 was upregulated in CRC tissues and was associated with advanced clinical stage and vessel invasion and that knockdown of KIF11 led to tumor growth arrest and increased sensitivity to oxaliplatin via enhanced DNA damage and apoptosis. Mechanistically, aberrantly activated p53 signaling or possibly deactivated GSK3ß signaling was responsible for KIF11 knockdown-mediated effects in CRC cells. Thus, our data firmly demonstrated that KIF11 could serve as a potential oncogene and proper biomarker for assessing oxaliplatin sensitivity in CRC.

12.
Hepatology ; 74(4): 1952-1970, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33928666

RESUMO

BACKGROUND AND AIMS: Proteins that recognize epigenetic modifications function as mediators to interpret epigenetic codes. Hypoxia response and metabolic rewiring are two major events during cancer progression. However, whether and how the epigenetic regulator integrates hypoxia response and metabolism together remain open for study. APPROACH AND RESULTS: We data mined the clinical association of 33 histone lysine acetylation reader proteins with liver cancer and found that ALL1-fused gene from chromosome 9 (AF9) is up-regulated in cancer and correlates with tumor stage and poor prognosis. Conditional deletion of Af9 in mouse liver resulted in decreased tumor formation induced by c-MET proto-oncogene/ß-catenin. Loss of AF9 heavily impaired cell proliferation and completely blocked solid tumor formation. We further discovered that AF9 formed a positive feedback circuit with hypoxia-inducible factor 1 alpha (HIF1α) and also stabilized MYC proto-oncogene (cMyc). Mechanically, AF9 interacted with HIF1α and targeted HIF1A promoter whereas AF9 recognized cMyc acetylation at K148, protected cMyc phosphorylation at S62, and then stabilized cMyc, which, in turn, up-regulates phosphofructokinase, platelet expression. Otherwise, knockout of Af9 in mouse hepatocytes increased the infiltration of CD8+ T cells, which is linked to the down-regulation of lactate dehydrogenase A. CONCLUSIONS: AF9 is up-regulated to promote gene expression of hypoxia tolerance and glycolysis by simultaneously forming a complex with HIF1α and recognizing acetylated cMyc. Our results establish the oncogenic role of AF9 in human liver cancer, which could be a potential target for designing drugs against liver cancer.


Assuntos
Carcinoma Hepatocelular/genética , Glicólise/genética , Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , Hipóxia Tumoral/genética , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Epigênese Genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral , beta Catenina/genética , beta Catenina/metabolismo
13.
Biomater Sci ; 9(6): 2020-2031, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33439161

RESUMO

Colorectal cancer (CRC) is the third most common cancer around the world. Recent findings suggest that cancer stem cells (CSCs) play a pivotal role in the resistance to current therapeutic modalities, including surgery and chemotherapy. Photodynamic therapy (PDT) is a promising non-invasive therapeutic strategy for advanced metastatic CRC. Traditional photosensitizers such as pyropheophorbide-a (Pyro) lack tumor selectivity, causing unwanted treatment-related toxicity to the surrounding normal tissue. In order to enhance the targeting properties of Pyro, we synthesize a novel photosensitizer, CD133-Pyro, via the conjugation of Pyro to a peptide domain targeting CD133, which is highly expressed on CRC CSCs and correlated with poor prognosis of CRC patients. We demonstrate that CD133-Pyro possesses the targeted delivery capacity both in CRC CSCs derived from HT29 and SW620 cell lines and in a xenograft mouse model of tumor growth. CD133-Pyro PDT can promote the production of reactive oxygen species (ROS), suppress the stemness properties, and induce autophagic cell death in CRC CSCs. Furthermore, CD133-Pyro PDT has a potent inhibitory effect on CRC CSC-derived xenograft tumors in nude mice. These findings may offer a useful and important strategy for the treatment of CRC through targeting CSCs.


Assuntos
Neoplasias Colorretais , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas , Peptídeos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico
14.
Cancer Med ; 10(1): 350-364, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33280236

RESUMO

Pancreatic cancer (PC) is the most malignant cancer type in the digestive system with a poor prognosis. Chemotherapy such as cisplatin is the last chance for PC patients diagnosed with advanced or metastatic disease. Obtaining a deep understanding of the molecular mechanism underlying PC tumorigenesis and identifying optimal biomarkers to estimate chemotherapy sensitivity are essential for PC treatment. The chromatin remodeler HELLS was found to regulate various tumor suppressors through an epigenetic pathway in several cancers. We analyzed HELLS expression in clinical samples by Western blotting and immunohistochemical staining. Next, we identified the variation in tumor growth and cisplatin sensitivity after knockdown of HELLS and explored the downstream mediators of HELLS in PC via RNA-seq, chromatin immunoprecipitation, and gain- and loss-of-function assays. We found that HELLS is upregulated in PC tissues and correlates with advanced clinical stage and a poor prognosis, and the knockdown of HELLS leads to tumor growth arrest and increased sensitivity to cisplatin. Mechanistically, the tumor suppressor TGFBR3 is markedly reexpressed after HELLS knockdown; conversely, compromising TGFBR3 rescues HELLS knockdown-mediated effects in PC cells. Thus, our data provide evidence that HELLS can serve as a potential oncogene and suitable biomarker to evaluate chemotherapy sensitivity via epigenetically silencing the tumor suppressor TGFBR3 in PC.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , DNA Helicases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA Helicases/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Biochem Cell Biol ; 122: 105731, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32097728

RESUMO

Pancreatic cancer is a leading cause of cancer-related death worldwide. Cisplatin is an essential drug treating patients with BRCA1/2 or PALB2 mutations. Whether other genetic determinants of cisplatin sensitivity exist and their underlying mechanisms remain unclear. Immunohistochemistry was used to determine METTL14 expression in pancreatic cancer tissues and non-tumoural tissues. Cell proliferation was detected with CCK-8 assays. Apoptosis was analysed via Western blotting and flow cytometry, and autophagy was analysed via Western blotting and immunofluorescence. In this work, we found higher METTL14 expression in pancreatic cancer tissues than in non-tumoural tissues, and METTL14 expression was associated with pathological characteristics. Downregulation of METTL14 with siRNA sensitized pancreatic cancer cells to cisplatin. Specifically, apoptosis and autophagy were significantly enhanced in METT14 knockdown cells compared with control cells after treatment with cisplatin. Mechanistically, the AMPKα, ERK1/2 and mTOR signalling pathways were disturbed by downregulation of METTL14. We further found that METTL14 knockdown-mediated autophagy was dependent on mTOR signalling and that mTOR activation decreased autophagy to the level observed in the control group. Collectively, our results indicate that METTL14 is upregulated in pancreatic cancer, downregulation of METTL14 sensitizes pancreatic cancer cells to cisplatin by enhancing apoptosis, and autophagy is improved via an mTOR signalling-dependent pathway.


Assuntos
Cisplatino/farmacologia , Metiltransferases/biossíntese , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo , Humanos , Metiltransferases/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Transfecção , Regulação para Cima
16.
Cancer Lett ; 469: 419-428, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31734356

RESUMO

The role of lncRNAs in the regulation of glutamate metabolism and metabolic reprogramming of pancreatic cancer (PC) during nutrient deprivation is largely unknown. Our study found that alpha-ketoglutarate (aKG) levels were significantly reduced in the absence of XLOC_006390. We subsequently confirmed that the decrease in aKG was mainly due to the downregulation of glutamate dehydrogenase 1 (GDH1) at the mRNA level. Therefore, we first screened transcription factors targeting the GDH1 gene promoter and confirmed that c-Myc regulates GDH1 transcription. c-Myc binds to the promoter of GDH1 and activates its transcription. Downregulation of GDH1 mRNA levels by XLOC_006390 deletion could be rescued by overexpression of c-Myc. Overexpression of XLOC_006390 promoted the protein stability of c-Myc by blocking its ubiquitination. Clinically, XLOC_006390 was positively correlated with the mRNA level of GDH1, and c-Myc positively regulated GDH1 gene expression, which was tightly associated with PC patient prognosis. The dysregulated lncRNA/c-Myc axis increased glutamate metabolism, promoting PC progression to a higher stage. Therefore, XLOC_006390/c-Myc may be a potential target for PC, and its abnormal activation also indicates the progression of PC.


Assuntos
Glutamato Desidrogenase/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Xenoenxertos , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
17.
Onco Targets Ther ; 12: 10153-10163, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32063710

RESUMO

AIM: Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer worldwide. Despite the decrease in mortality of CRC patients, further investigation of the molecular pathogenesis of CRC could unveil new therapeutic targets and offer better prognosis predictions, which might direct attention to epigenetic regulators. METHODS: Publicly available data from the Gene Expression Omnibus (GEO) database and clinical samples were collected. Bioinformatics methods were used to screen hub genes expressed in CRC. qRT-PCR and Western blotting were used to experimentally determine the expression of one gene of interest, the helicase lymphoid-specific (HELLS) gene, at the RNA and protein levels. Immunohistochemical (IHC) assays were used to correlate the stained HELLS proteins to survival data. Cell proliferation levels were assayed by a CCK-8 kit, a colony formation assay was performed, and flow cytometry was used to quantify the cells at each stage of the cell cycle. RESULTS: A total of 225 overlapping genes were screened, including 14 hub genes. Analysis through a protein-protein interaction (PPI) network and the Gene Ontology database was performed by using the Cytoscape and DAVID online tools, respectively. HELLS RNA and protein expression levels in tumor tissues were 2.09-fold higher and 1.46-fold higher, respectively, than in the peritumoral tissues (p < 0.001, p<0.001). HELLS expression was significantly associated with the T stage (p=0.0027), M stage (p=0.0119), and TNM clinical stage (p = 0.0312) and a higher pathological grade (p=0.049). Highly expressed HELLS was reversibly associated with overall survival (log-rank p = 0.027). HELLS siRNA impaired cell proliferation and colony generation in vitro. HELLS siRNA induced significant G2+M arrest in HT29 and HCT116 cells compared with the respective negative controls (82.29% vs 25.85% and 35.41% vs 15.26%, respectively). CONCLUSION: Our data revealed that HELLS was significantly upregulated in CRC and correlated with clinicopathological parameters. High expression of HELLS indicated poor prognosis for CRC patients. HELLS knockdown led to impaired cell proliferation, colony generation, and G2+M cell cycle arrest.

18.
Sci Rep ; 8(1): 11995, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097620

RESUMO

The thermal field theory is applied to fermionic superfluids by doubling the degrees of freedom of the BCS theory. We construct the two-mode states and the corresponding Bogoliubov transformation to obtain the BCS thermal vacuum. The expectation values with respect to the BCS thermal vacuum produce the statistical average of the thermodynamic quantities. The BCS thermal vacuum allows a quantum-mechanical perturbation theory with the BCS theory serving as the unperturbed state. We evaluate the leading-order corrections to the order parameter and other physical quantities from the perturbation theory. A direct evaluation of the pairing correlation as a function of temperature shows the pseudogap phenomenon, where the pairing persists when the order parameter vanishes, emerges from the perturbation theory. The correspondence between the thermal vacuum and purification of the density matrix allows a unitary transformation, and we found the geometric phase associated with the transformation in the parameter space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...